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RHEOLOGICAL BEHAVIOR OF A DILUTE SUSPENSION OF RELATIVELY COARSE 

DEFORMABLE PARTICLES IN A SIMPLE SHEAR FLOW 

M. M. Esmukhanov UDC 532.529 

The behavior of dilute suspensions of stiff and deformable ellipsoidal particles of such 
a size that it is necessary to take account of the influence of Brownian forces on the par- 
ticle behavior is investigated in [i, 2]. The case is considered in this paper when the sus- 
pended deformable particles are relatively coarse, i.e., the influence of the Brownian and 
inertial forces on the microstructure behavior can be neglected. The rheological behavior of 
the suspension is here determined by the microstructure behavior under the action of just 
hydrodynamic forces. 

It is shown in [3] that during simple shear the stiff ellipsoidal particle subjected to 
hydrodynamic forces performs periodic motion relative to its center of inertia along one of 
the closed orbits that form an infinite one-parameter family located on the surface of a sphere. 
The distribution of the suspended stiff particles over the orbits cannot possibly be deter- 
mined uniquely without relying on some additional assumptions. Thus, it was considered in 
[3] that the particles are oriented in such a manner that the principle of minimum energy 
dissipation is satisfied. The hypothesis about equally probable suspended stiff particle 
distributions over orbits is examined in [4]. It is assumed in [5, 6] that the axis of ro- 
tation of a deformable ellipsoidal particle is in the shear plane. However, as is shown in 
[7], there are significant discrepancies between experimental data on the macroproperties of 
the suspension and the theoretical results obtained on the basis of given hypotheses. A 
method is presented in [8, 9] for finding the distribution of stiff particles over the orbits 
that is based on assumption of the presence of weak Brownian motion of the particles that 
does not influence the rheological properties of the suspension. Weak Brownian motion over 
the lapse of a long time interval results in a certain stationary distribution of the sus- 
pended particles over the orbits. 

A hypothesis proposed in [8, 9] for stiff particles is used in this paper to find the 
distribution of deformable particles over the family of orbits. In contrast to the case of 
relatively coarse stiff particles, the one-parameter family of closed orbits of viscoelastic 
deformable particles is located on the surface of a triaxial ellipsoid whose geometry and 
orientation depend on the shear rate, the viscosity of the dispersion medium, and the proper- 
ties of the suspended particle material. 

i. RHEOLOGICAL EQUATIONS OF STATE 

Let us consider a dilute suspension of suspended deformable particles. We simulate an 
element of the suspension microstructure by a deformable ellipsoid of revolution, whose stress 
state in the material is determined by the internal elasticity G and internal viscosity q. 
The rheological equations of state for such a suspension have the form [2] 

T~y = -- <P >6ij + 2 <~0>d~j + <~ininj > + ( i. I) 
(~2nhnmnln s >d~ -+- 2 <~3(di~n~n~ + dj~nkn~)>. 
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Here Tij, dij are the stress and strain rate tensors of the suspension, n i is a vector whose 
direction agrees with the direction of the particle axis of revolution, and its modulus n 
equals half the length of this axis, P, ~i are rheological functions dependent on G, B and 
ni, the angular brackets denote particles averaged over angular positions in space and over 
the lengths of the particle semi-axis of revolution by using distribution function F satis- 
fying the equation 

OF/Ot q- O(Fni)/On~ = 0 ( 1 . 2 )  

(the dot denotes the derivative with respect to time). 

The behavior of an isolated suspended particle is governed by the equations [2] 

n~ = ~ijnj--~-llni-~12d~mn~nmni ~ ~3dijnj + %4eiJhMjn~-~-%~Rjnjni, (1.3) 

where Xi a r e  r h e o l o g i c a l  f u n c t i o n s  dependent  on G, q and t he  p a r t i c l e  geometry ,  R j ,  and Mj 
a re  the  f o r c e  and moment of  the  f o r c e s  a c t i n g  on a p a r t i c l e ,  wi th  the  e x c e p t i o n  of  the  hy- 
drodynamic f o r c e s ,  ~ i j k ,  6 i j  a r e  skew-symmetr ic  and symmetric Kronecker  symbols ,  and ~ i j  i s  
the velocity vortex tensor. 

In the case when it is necessary to take account of the action of Brownian forces on 
the microstructure [i0] 

= _ k T  i OF n~ Of R~ ~n i, Mi -- k T e ~  ~ ( i. 4) On m 

(k is the Boltzmann constant and T is the temperature). 

The rheological functions ~i, Xi, P for a dilute suspension of suspended particles are 
found in [2]. However, an error associated with taking incompletely into account all the 
forces acting on the particle is admitted there in their determination. As is shown in [6] 
such an error was also admitted in [5] in studying the behavior of suspensions of visco- 
elastic spheres. 

Taking account of the remark mentioned, P, Xi, and ~i are determined as follows: 

_ i _z v - 

~a = p2-____! ~4 -- ~5 = 

+ u i i '  (2 + o - 

nh nm " " 2 t 
P = Po 2~___[3 [ab2[~o ~ L_..L r ~ (~o --  ao + b o: o (%2a ~ + %a)) dhm + 

\a" dn k ~o ] ab2 (P2ao -~- ~o) ' ~tO = ~ 'l a-'~'~ ' ( 1 . 5  ) 

~1 = j ~  ~ _ _ . j ) )  + 2,a3b-----~ 1\2(2+3ab2~o(n/ ,_t)) , --  2+3ab2~oCn/,--t) + 2 p 2 T t  ' 

Here a and b are the semiaxis of revolution and the equatorial radius of the particle, n = a, 
p = a/b, q0 is the ratio of the semiaxes of the ellipsoidal particle in the undeformed state, 
s0, $0, s0, $~, so, ~'0' are functions of a and b defined in [3], V is the particle volume con- 
centration, ~ is the fluid viscosity, and P0 is the pressure in the fluid in the absence of 
suspended particles. In the case of a suspension of relatively coarse viscoelastic particles, 
it is necessary to set T = 0 in (1.5). 
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flow 

(1.3). In a coordinate system whose origin 
coordinate axes are parallel to the axes of 
(1.3) have the dimensionless form 

dO p2 ! 
2O, (p2 + I) -- sin 29 sin (p2 + i) ~ P~ cos~ 9 q- sin2 9, 

~7= 4 

- -  3p sin 2q~ ~in ~ 0 dp 3ab2~P (P/qo)~(3( 1 qo/P) + ~ 
e -~  ---- - -  2 + 3abUf3o (~l/lX -- 1) 2 (2 -}- 3ab2~o (~l/l~ --  l))"' 

2. BEHAVIOR OF AN ISOLATED PARTICLE 

Let us investigate the behavior of suspended deformable particles in a simple shear 

V~ = O, V~ = Kx ,  V~ = O. ( 2 . 1 )  

The b e h a v i o r  o f  a r e l a t i v e l y  c o a r s e  p a r t i c l e  i n  a s i m p l e  s h e a r  f l o w  i s  d e s c r i b e d  by  
i s  a t  t h e  p a r t i c l e  c e n t e r  o f  i n e r t i a  and  t h e  
t h e  l a b o r a t o r y  ( x ,  y ,  z )  c o o r d i n a t e  s y s t e m ,  

(2.2) 

wher E = K~/G is a parameter characterizing the ratio of the hydrodynamic forces to the 
internal elasticity forces of the particle, 0 and 9 are the angles of a spherical coordinate 
system nl = ncosgsin0, n 2 = n singsin0, n 3= ncos0; and the time scale equals I/K. 

Let us consider the case s < I. We assume that at a certain time t = 0 the ellipsoidal 
particle passes through its undeformed state during motion, i.e., 

P : qo, 9 = 90, 0 = O~ a t  t = O, ( 2 . 3 )  

where 9 ~ and Oo are unknown angles characterizing the angular location of the particle at 

the time t = 0 for p = q0. 

The system (2.2) describing the orientation and deformation of a suspended particle has, 
for ~ = 0, the periodic solution P0, %, 00: 

Po : qo, tg 9o = qo tg (tqo/(qo 2 + t)), tg Oo = CqJ(qo ~ cos 2 % ~ sin 2 9o) ~/~ ( 2 . 4 )  

(C = tan 0 ~ is a constant). The solution (2.4) yields the motion of a stiff ellipsoidal 
particle and agrees with the solution found in [3]. The end of the semiaxis of revolution 
of a stiff particle performs periodic motion relative to its center of motion in one of 
the orbits. The orbits are disposed on a sphere surface and form a one-parameter family 
characterized by the parameter C designated the orbit constant in [3]. It is shown in [ii] 
that the general solution of systems of equations of the type (2.2) is representable in the 
form of asymptotic series in powers of ~. 

Let us assume 

m=O m=O m=O m=l 

The initial conditions for Pm, 0m and 9m are 

Pi = 0, 0 i = 0, 9i = 9i ~ at i ~ I, P0 = q0, 00 = 0~ % = 0. (2.6) 

Executing the usual manipulations, systems of equations can be obtained to determine 
Pi, 9i and 0 i. The equations to determine 9i and 0 i will be differential while the equations 
for Pi are algebraic because of the singularities of the initial equations (2.2). We find the 
values of the unknown angles %o in such a way as to satisfy the initial conditions (2.6) for 

Pi" 

The zeroth terms of the expansions (2.5) are represented by the relationships (2.4). The 
first terms of the expansions have the form 

C2q~ sin 2CPo 

= 2( b  o)o ( c  qo + qo cos % + sin 2 %) '  

~ [(2C2q2-~q2o-~t)(q~c~ 1-- - [ C2q~ -{- q~ C~ ~9~ -~- sill2 q)~ I . . . . . . .  S1]]. 2 ] q~ ~  - -  

~ , • ) 9o  

0 1 =  A c ~ q ~ o $ q ] c o - ~ s ~ [ p : ~  o, A =  a r c t g \  % / - -  

2qo(C2q~q-t)l /2(C2-(-l)  1/2 ((C2qUo+t)l /~tgepq)+ 
- -  C (ab2~0)0 (q~-- t) 2 arctg \ (C--~ 1)1/--- ~ qo ] 
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2 2 2 " 

"+ C(q~-~-(q~--i)ivP~176176 Sin2r + q~ q~176 X 
2 (abi~;)o (q~ -- i) qo 2C (ab ~ ~;)0 (q4 __ i)  

l C2q~ -I- q~) co# ~o + sins (Po l q~ 2 -~- 3 (ab2~o)o (~I/l~ --  I) 
sin 2r . ........... , r = 

(c~ + 0 (q~ ~os~ ~o + ~-~ ~o) I q~+~ 3 (~g)o ( 2 . 7 )  

[(ab2$~)0 is the value of the function ab=B~ for p = q0]. If the suspended viscoelastic 
particle is spherical in shape in the undeformed state, i.e., q0 = i, then 

t5C2 sin 2r ( r t5C~ sin2r , 
Pl 8(C2+ t) 32(C2 + t) 

t6(c~+1)~ % ~ 7, r nV-l. 
Approximations of higher order in e can be obtained analogously. 

As follows from (2.4) and (2.7), the deformations and orientations of the suspended 
particle occur in such a manner that the end of the semiaxis of rotation of the particle 
performs periodic motion relative to its center of inertia along one of the infinite one- 
parameter family of closed orbits characterized by C. The one-parameter family of orbits is 
on the surface of a triaxial ellipsoid whose geometry and orientation depend on the shear 
rate, the internal properties of the particle material, and the fluid viscosity. The angle 
~0 characterizes the orientation of this triaxial ellipsoid of orbits relative to a coordinate 
system whose origin is related to the center of inertia of the suspended particle. 

when the suspended particleis a sphere in the undef0rmed state, these results agree with 
the solutions [6]. 

3. RHEOLOGICAL BEHAVIOR OF THE SUSPENSION 

To determine the rheological behavior of the suspension, the distribution function over 
the angular positions and lengths of the particle semiaxes of rotation must be found that 
satisfies (1.2). Since the end of the particle semiaxis of rotation is on the surface of 
the orbit triaxial ellipsoid during motion in a simple shear flow, then it is convenient to 
go over to Gauss coordinates (C, ~) on the surface of the orbit ellipsoid and order to deter- 
mine the function F. The passage from the spherical (n, 0, r coordinate system to the Gauss 
coordinates (C, ~) is realized by means of the formulas 

n = Z(C, ~), r = r  T),O = O(C, ~), 

where Z = ab~pi/a; �9 = qot/(qo ~ + I); p, r and O are solutions of the equations of particle motion 
obtained from (2.4), (2.5), and (2.7). 

Taking (1.3) and (1.4) into account, (1.2) for the determination of the stationary dis- 
tribution of the suspended particles in orientation and deformation spaces in a simple shear 
flow (2.1) has the form 

div (Fn)+  div ( k T ( l  4 - -  ~5)(n" grad f)n)  + div (kTX4~ grad F)  = 0. ( 3 . 1 )  

Here  t h e  l a s t  two t e rms  c h a r a c t e r i z e  t h e  i n f l u e n c e  o f  Brownian m o t io n  on t h e  b e h a v i o r  of  t h e  
s u s p e n s i o n  m i c r o s t r u c t u r e ,  n can change  o n l y  u n d e r  t h e  a c t i o n  o f  h y d ro d y n am ic  f o r c e s  n i  = 
~ i jn j+~ ln i+~ idkmn~nmn  i + ~3dijnj. The f u n c t i o n  F s h o u l d  s a t i s f y  t h e  c o n d i t i o n  o f  n o r m a l i z a t i o n  
t o  one .  

In  t h e  c a s e  o f  r e l a t i v e l y  c o a r s e  p a r t i c l e s ,  when t h e  i n f l u e n c e  o f  Brownian  m o t io n  o f  t h e  
p a r t i c l e s  on t h e  r h e o l o g i c a l  b e h a v i o r  o f  t h e  s u s p e n s i o n ,  meaning  a l s o  t h e  l a s t  two t e rms  in  
( 3 . 1 ) ,  can  be n e g l e c t e d ,  ( 3 . 1 )  has  t h e  f o l l o w i n g  form in  t h e  Gauss (C, ~) c o o r d i n a t e  s y s t em 

(O/O~)(F V a )  = 0, ( 3 . 2 )  

where  a = d e t  and a i 0  i s  t h e  m e t r i c  t e n s o r  o f  a c u r v i l i n e a r  n o n o r t h o g o n a l  (C ,  c o o r -  
d i n a t e  system e surface of the triaxial orbit ellipsoid: 

a n = Zca-4:-Z2(Oc2 + sin2Or = Z,2-+-Z2(O,i-}-sin~Or 

al~ ~ air = Z c Z ~  +Zi(OcO~ + siniOr162 

54 



where the subscripts C and �9 denote differentiation of the appropriate functions with respect 
to these variables. 

The solution (3.2) is found to the accuracy of an unknown function f(C) that character- 
izes the distribution of the suspended particles over the orbits 

F(C, ~) = / ( C ) / ] / L  (3 .3)  

To determine f(C) we will assume that weak Brownian motion exists that does not influence 
the rheological properties of the suspension. But the action of forces due to weak Brownian 
motion of the particles results in the limit of a long time interval in a certain steady par- 
ticle distribution over the orbits. Let us integrate (3.1) over a certain simply-connected 
domain o belonging to the surface of the orbit ellipsoid by applying the Green's formula [12] 
to go from a surface integral over to an integral over the closed curve L bounding o and 
taking into account that ( n.grad F) , we obtain 

.( (,:.~)F dl + ~ kT%,n~(~.gradF)dl = 0 (3.4) 
L L 

(a is the exterior normal to L located in the tangent plane to the orbit ellipsoid). 

Let us select the simply-connected domain o so that the curve L would be an orbit char- 
acterized by the constant C. Then taking (~-n) = 0 into account, (3.4) has the form 

o r  

S%4n ~ ( g . g r a d F )  dl = 0 
C 

2~ 2~ 

o o 

whose solution we write as 

The constant in (3.5) is determined from the condition of normalization of the function F(C, 
~): 

! (c) dC = ~ .  
o 

Averaging any value y(C, ~) entering in the rheological equations of state (I.i) is per- 
formed as follows 

<y(C, ~)> = 2 ] (C) ~ y (C,'~) d'~ dC, 
o o 

For E = 0 the function F(C, ~) agrees with the distribution functions of stiff relatively 
coarse ellipsoidal particles in a shear flow of the suspension [8, 9]. 

Results of computations of the rheological characteristics of a dilute suspension of 
relatively coarse deformable particles on the dimensionless shear velocity r = K~/G performed 
on the basis of the theory elucidated above are given in Figs. 1-4. 

Dependences of the characteristic viscosity of the suspension 

[9] = lira (~a - -  &)/~g ( 3 . 6 )  
V ~ O  

on e a r e  shown i n  F i g s .  1 and  2 f o r  d i f f e r e n t  v a l u e s  o f  t h e  m i c r o s t r u c t u r e  p a r a m e t e r s .  The  
~a is the effective viscosity of the suspension in (3.6). Thus, curves i-4 in Fig. 1 are 
computed for q/0 = 2 and q0 = 0.5, 2, 3, 5, the straight lines 1-4 correspond to the char- 
acteristic viscosity of a dilute suspension of relatively coarse particles for the same q0 
as for the corresponding curves. The curves 1-5 in Fig. 2 are computed for q0 = 2 and D/O = 
i, 1.5, 2, 6, Ii. 
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Dependences of the dimensionless differences in the normal stresses ~z = (Txx - Tzz)/GV, 
T 2 = (Tvv - Tzz)/GV on E are presented in Figs. 3 and 4 (~z are solid lines and T 2 are 
dashed)~- The curves 1-4 in Fig. 3 correspond to q/p = 2 and q0 = 0.5, 2, 3, 5. Curves 1-4 
in Fig. 4 are obtained for q0 = 2 and q/p = i, 1.5, 2, 6. 

The results of computations presented in the figures show that a dilute suspension of 
relatively coarse deformable particles (in contrast to a dilute suspension with relatively 
coarse stiff particles) in a simple shear flow has a non-Newtonian behavior, the presence of 
the difference in the normal stresses, the dependence of the rheological characteristics 
(the effective viscosity of the suspension and the difference in the normal stresses) on 
the shear velocity. The appearance of anomalous properties of the dilute suspension depend 
substantially on the internal viscosity and elasticity of the particle material and the 
viscosity of the dispersion medium. 

Upon realization of the passage to the limit to the case of a suspension of solid spheres 
in the theory represented, the characteristic viscosity of the suspension is 2.5, which agree 
with the known Einstein formula for the viscosity of a dilute suspension of stiff spheres. 
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CONVECTIVE INSTABILITY IN A MEDIUM WITH SPIRAL TURBULENCE 

Yu. A. Berezin and V. P. Zhukov UDC 532.5 

In the papers of Moiseev, Sagdeev, Tur, et al. (see [i] and the literature cited there), 
the generation of large-scale convective structures on a background of spiral turbulence was 
considered and the relevant equations were obtained and analyzed. It was assumed that the 
turbulence is homogeneous and isotropic but does not possess reflection invariance. In this 
model random perturbations are amplified, which can lead to generation of large-scale vor- 
tices. This situation was studied in [i] for the example of a plane-parallel layer of in- 
compressible liquid heated from below. Simplified boundary conditions were assumed in order 
to obtain an analytic solution. It was shown that as the spirality increases the minimum 
critical Rayleigh number decreases and the horizontal dimensions of the convection cells 
increase. At a critical value of the spirality, the structure of the convective flow change 
completely and a vortex is formed whose dimensions are determined by the external conditions 
of the problem such as inhomogeneities in the horizontal direction. 

In the present paper the equations of [i] are used to analyze the convective instability 
in an infinite horizontal layer and in a disk heated from below in the linear theory. 

The equations describing convection for large-scale disturbances in the presence of 
spiral turbulence have the form [I] 

au Vp + vAu + ~gOe + ~gA~f, oO 0-7- = - -  p--~ ~ = A (eu) + %AO, d i v  u = u, 

f = e(e r o t  u ) -  ( e v ) [ e u l ,  e = (0, O, t ) .  

Here v and X are the turbulent viscosity and thermal conductivity. Because these quantities 
are nearly equal to one another [1-3], we assume v = X. The coefficient X is associated with 
the spirality of the turbulence. The rest of the notation is standard [2]. 

We transform to dimensionless variables using as scales of measurement [2]: x 0 = H 
(height of the liquid layer) for length, t o = H2/~ for time, u 0 = v/H for velocity, P0 = 
00v2/H 2 for pressure, and T o = AH for temperature. Then 

On/at = - - V p + A n + B a O e  + B a  Sf ,  OO~t = ( e n ) + A O ,  ( 1 )  

d iv  u = O, f = e(e r o t  u ) - -  ( e v ) [ e u ] ,  e = (0, O, t ) ,  

where Ra is the Rayleigh number and S is a coefficient connected with the spirality of the 
turbulence (Ha  = ~gAH4/v 2, S = %v/H3). 

We consider an infinite horizontal liquid layer included between two planes z = 0 and 
z = i. Then u = (u, v, w) and @ are given by 

u = u ' ~ )  s in  kx exp @t), v = v'(z) s in  kx exp (?t) ,  

w = w'(z) c o s k x e x p  (~ t ) ,O = O'(z) cos kx exp (~t). 

In the case of a cylindrical layer (disk) cos kx is replaced by the Bessel function of 
order zero J0(kr) and sinkx is replaced by the Bessel function of order one Jl(kr). The 
results given below do not change in this case. Putting these substitutions into (i) we find 
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